Spring til indhold

Primtalstrillinger

Fra Wikipedia, den frie encyklopædi

Inden for matematik er primtalstrillinger sæt af tre primtal, hvor forskellen fra det største til det mindste primtal er 6. Primtalstrillinger må have formen (p, p + 2, p + 6) eller (p, p + 4, p + 6).[1] Med undtagelse af (2, 3, 5) og (3, 5, 7), er dette den tættest mulige gruppering, idet ét ud af tre på hinanden følgende ulige tal vil være deleligt med 3 og derfor ikke et primtal (bortset fra 3 selv).

De første primtalstrillinger er:

(5, 7, 11), (7, 11, 13), (11, 13, 17), (13, 17, 19), (17, 19, 23), (37, 41, 43), (41, 43, 47), (67, 71, 73), (97, 101, 103), (101, 103, 107), (103, 107, 109), (107, 109, 113), (191, 193, 197), (193, 197, 199), (223, 227, 229), (227, 229, 233), (277, 281, 283), (307, 311, 313), (311, 313, 317), (347, 349, 353), (457, 461, 463), (461, 463, 467), (613, 617, 619), (641, 643, 647), (821, 823, 827), (823, 827, 829), (853, 857, 859), (857, 859, 863), (877, 881, 883), (881, 883, 887)

  1. ^ Chris Caldwell. The Prime Glossary: prime triple from the Prime Pages. Hentet 2010-03-22.
Spire
Denne artikel om matematik er en spire som bør udbygges. Du er velkommen til at hjælpe Wikipedia ved at udvide den.