Spring til indhold

Metrik (relativitetsteori)

Fra Wikipedia, den frie encyklopædi
For alternative betydninger, se Metrik. (Se også artikler, som begynder med Metrik)

Metrik (relativitetsteori) er (d)et længdemål der beregnes på en topologisk mangfoldighed. Den generelle relativitetsteori's metrik må forklare geometrier forskellig fra klassisk euklidisk geometri og benytter hertil en formelopstilling - en metrisk tensor - til at definere afstande og vinkler.

Enhver symmetrisk co-variant tensor (en) af dimension 2, fx definerer en metrik. En mangfoldighed udstyret med en metrik kaldes for en Riemann-mangfoldighed. En metrik kan bruges til at definere afstand og længden af vektorer. Den infinitesimale afstand (interval som det kaldes i relativitetsteori) som vi kalder ds, mellem to nabopunkter og er defineret som:

Bemærk at dette giver kvadratet på den infinitesimale afstand, (ds)², hvilket normalt skrives ds². Ovenstående udtryk kaldes også for linjeelementet, og kaldes også for den metriske form eller første fundamental form. Kvadratet på længden, eller normen, af en kontra-variant vektor X^a er defineret som

En metrik siges at være enten positiv eller negativ hvis der for alle vektorer, X, gælder hhv. enten at X² > 0 eller X² < 0. Hvis der både findes vektorer med positiv norm og vektorer med negativ norm, kaldes metrikken for ubestemt.

Vinklen mellem to vektorer og , med og er givet ved:

Determinanten af metrikken skrives som . Specielt siges to vektorer at være ortogonale hvis . I relativitetsteoriens ubestemte metrik eksisterer også vektorer der er ortogonale på sig selv, altså nulvektorer.

Metrikken er ikke-singulær når . I så fald må det inverse par (de) til , gives som

Det følger fra definitionen at er en kontra-variant vektor af dimension 2 og den kaldes for den kontra-variante metrik. Vi kan nu bruge og til at hæve og sænke indicies ved at definere,

og

Vi betragter fremover g, og som repræsentanter for det samme geometriske objekt, metriken g. Siden vi nu frit kan hæve og sænke indicies med metrikken, er det vigtigt at være forsigtig med hvilke vektorer der er co-variante og hvilke der er kontra-variante. For eksempel vil generelt være forskellig fra