Spring til indhold

Fil:Window function (rectangular).png

Sidens indhold er ikke tilgængeligt på andre sprog.
Fra Wikipedia, den frie encyklopædi

Fuld opløsning (2.500 × 1.123 billedpunkter, filstørrelse: 83 KB, MIME-type: image/png)


Denne fil er fra Wikimedia Commons

Transferred from en.wikipedia to Commons by Tiaguito.

Beskrivelse

Beskrivelse rectangular window and frequency response
Dato
Kilde Eget arbejde
Forfatter Bob K (original version), Olli Niemitalo
Tilladelse
(Genbrug af denne fil)
Public domain Jeg, indehaveren af ophavsretten til dette værk, udgiver dette værk som offentlig ejendom. Dette gælder i hele verden.
I nogle lande er dette ikke juridisk muligt. I så fald:
Jeg giver enhver ret til at anvende dette værk til ethvert formål, uden nogen restriktioner, medmindre sådanne restriktioner er påkrævede ved lov.
Andre versioner
En vektorversion af dette billede (SVG) er tilgængelig. Det bør bruges i stedet for punktgrafikbilledet når det er fordelagtigt.

File:Window function (rectangular).png → File:Window function and frequency response - Rectangular.svg


På andre sprog
Alemannisch  العربية  беларуская (тарашкевіца)  български  বাংলা  català  нохчийн  čeština  dansk  Deutsch  Ελληνικά  English  British English  Esperanto  español  eesti  euskara  فارسی  suomi  français  Frysk  galego  Alemannisch  עברית  hrvatski  magyar  հայերեն  Bahasa Indonesia  Ido  italiano  日本語  ქართული  한국어  lietuvių  македонски  മലയാളം  Bahasa Melayu  norsk bokmål  Plattdüütsch  Nederlands  norsk nynorsk  norsk  occitan  polski  prūsiskan  português  português do Brasil  română  русский  sicilianu  Scots  slovenčina  slovenščina  српски / srpski  svenska  தமிழ்  ไทย  Türkçe  татарча / tatarça  українська  vèneto  Tiếng Việt  中文  中文(中国大陆)  中文(简体)  中文(繁體)  中文(马来西亚)  中文(新加坡)  中文(臺灣)  中文(臺灣)  +/−
Nyt SVG-billede

Source code
InfoField
The script below generates these .png images:

This script has not been tested in MATLAB. See the individual file histories for the simpler MATLAB scripts that were the basis of this script.

Generation of svg files by minor modification of the script displayed visual artifacts and renderer incompatibilities that could not be easily fixed. The current script fixes the visual artifacts in the png file as a post-processing step. The script generates a semi-transparent grid by taking a weighted average of two images, one with the grid and one without.
N
 
PNG Rastergrafik blev lavet med GNU Octave af Olli Niemitalo.

Matlab

function plotWindowLayer (w, N, gridded, wname, wspecifier)
 
  M=32;
  k=0:N-1;
  dr = 120;

  H = abs(fft([w zeros(1,(M-1)*N)]));
  H = fftshift(H);
  H = H/max(H);
  H = 20*log10(H);
  H = max(-dr,H);
 
  figure('Position',[1 1 1200 520])
  subplot(1,2,1)
  set(gca,'FontSize',28)
  area(k,w,'FaceColor', [0 1 1],'edgecolor', [1 1 0],'linewidth', 2)
  xlim([0 N-1])
  if (min(w) >= -0.01)
    ylim([0 1.05])
    set(gca,'YTick', [0 : 0.1 : 1])
    ylabel('amplitude','position',[-16 0.525 0])
  else
    ylim([-1 5])
    set(gca,'YTick', [-1 : 1 : 5])
    ylabel('amplitude','position',[-16 2 0])
  endif
  set(gca,'XTick', [0 : 1/8 : 1]*(N-1))
  set(gca,'XTickLabel',[' 0'; ' '; ' '; ' '; ' '; ' '; ' '; ' '; 'N-1'])
  grid(gridded)
  set(gca,'LineWidth',2)
  set(gca,'gridlinestyle','-')
  xlabel('samples')
  if (strcmp (wspecifier, ""))
    title(cstrcat(wname,' window'))
  else
    title(cstrcat(wname,' window (', wspecifier, ')'))
  endif
  set(gca,'Position',[0.08 0.11 0.4 0.8])
  set(gca,'XColor',[1 0 1])
  set(gca,'YColor',[1 0 1])
  
  subplot(1,2,2)
  set(gca,'FontSize',28)
  h = stem(([1:M*N]-1-M*N/2)/M,H,'-');
  set(h,'BaseValue',-dr)
  ylim([-dr 6])
  set(gca,'YTick', [0 : -10 : -dr])
  set(findobj('Type','line'),'Marker','none','Color',[0 1 1])
  xlim([-M*N/2 M*N/2]/M)
  grid(gridded)
  set(findobj('Type','gridline'),'Color',[.871 .49 0])
  set(gca,'LineWidth',2)
  set(gca,'gridlinestyle','-')
  ylabel('decibels')
  xlabel('bins')
  title('Frequency response')
  set(gca,'Position',[0.59 0.11 0.4 0.8])
  set(gca,'XColor',[1 0 1])
  set(gca,'YColor',[1 0 1])

endfunction

function plotWindow (w, wname, wspecifier = "", wfilespecifier = "")

  if (strcmp (wfilespecifier, ""))
    wfilespecifier = wspecifier;
  endif

  N = size(w)(2);
  B = N*sum(w.^2)/sum(w)^2   % noise bandwidth (bins), set N = 4096 to get an accurate estimate
  
  plotWindowLayer(w, N, "on", wname, wspecifier);  % "gridded" = "on"
  print temp1.png -dpng "-S2500,1165"
  close
  plotWindowLayer(w, N, "off", wname, wspecifier);  % "gridded" = "off"
  print temp2.png -dpng "-S2500,1165"
  close
% I'm not sure what's going on here, but it looks like the author might have been able
% to save himself some time by using set(gca,"Layer","top") and set(gca,"Layer","bottom").
  I = imread ("temp1.png");
  J = imread ("temp2.png");
  info = imfinfo ("temp1.png");
  w = info.Width;
  c = 1-(double(I(:,1:w/2,1))+2*double(J(:,1:w/2,1)))/(255*3);
  m = 1-(double(I(:,1:w/2,2))+2*double(J(:,1:w/2,2)))/(255*3);
  y = 1-(double(I(:,1:w/2,3))+2*double(J(:,1:w/2,3)))/(255*3);
  c = ((c != m) | (c != y)).*(c > 0).*(1-m-y);
  I(:,1:w/2,1) = 255*(1-c-m-y + 0*m + 0*y + 0*c);
  I(:,1:w/2,2) = 255*(1-c-m-y + 0*m + 0*y + 0.4*c);
  I(:,1:w/2,3) = 255*(1-c-m-y + 0*m + 0*y + 0.6*c);
  c = 1-(double(I(:,w/2+1:w,1))+2*double(J(:,w/2+1:w,1)))/(255*3);
  m = 1-(double(I(:,w/2+1:w,2))+2*double(J(:,w/2+1:w,2)))/(255*3);
  y = 1-(double(I(:,w/2+1:w,3))+2*double(J(:,w/2+1:w,3)))/(255*3);
  c = ((c != m) | (c != y)).*c;
  I(:,w/2+1:w,1) = 255*(1-c-m-y + 0*m + 0*y + 0.8710*c);
  I(:,w/2+1:w,2) = 255*(1-c-m-y + 0*m + 0*y + 0.49*c);
  I(:,w/2+1:w,3) = 255*(1-c-m-y + 0*m + 0*y + 0*c);
  if (strcmp (wfilespecifier, ""))
    imwrite (I, cstrcat('Window function and frequency response - ', wname, '.png'));
  else
    imwrite (I, cstrcat('Window function and frequency response - ', wname, ' (', wfilespecifier, ').png'));
  endif
  
endfunction

N=128;
k=0:N-1;

w = 0.42 - 0.5*cos(2*pi*k/(N-1)) + 0.08*cos(4*pi*k/(N-1));
plotWindow(w, "Blackman")

w = 0.355768 - 0.487396*cos(2*pi*k/(N-1)) + 0.144232*cos(4*pi*k/(N-1)) -0.012604*cos(6*pi*k/(N-1));
plotWindow(w, "Nuttall", "continuous first derivative")

w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.032*cos(8*pi*k/(N-1));
plotWindow(w, "Flat top")

w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.028*cos(8*pi*k/(N-1));
plotWindow(w, "SRS flat top")

w = ones(1,N);
plotWindow(w, "Rectangular")

w = (N/2 - abs([0:N-1]-(N-1)/2))/(N/2);
plotWindow(w, "Triangular")

w = 0.5 - 0.5*cos(2*pi*k/(N-1));
plotWindow(w, "Hann")

w = 0.53836 - 0.46164*cos(2*pi*k/(N-1));
plotWindow(w, "Hamming", "alpha = 0.53836")

alpha = 0.5;
w = ones(1,N);
n = -(N-1)/2 : -alpha*N/2;
L = length(n);
w(1:L) = 0.5*(1+cos(pi*(abs(n)-alpha*N/2)/((1-alpha)*N/2)));
w(N : -1 : N-L+1) = w(1:L);
plotWindow(w, "Tukey", "alpha = 0.5")

w = sin(pi*k/(N-1));
plotWindow(w, "Cosine")

w = sinc(2*k/(N-1)-1);
plotWindow(w, "Lanczos")

w = ((N-1)/2 - abs([0:N-1]-(N-1)/2))/((N-1)/2);
plotWindow(w, "Bartlett")

sigma = 0.4;
w = exp(-0.5*( (k-(N-1)/2)/(sigma*(N-1)/2) ).^2);
plotWindow(w, "Gaussian", "sigma = 0.4")

w = 0.62 -0.48*abs(k/(N-1) -0.5) +0.38*cos(2*pi*(k/(N-1) -0.5));
plotWindow(w, "Bartlett–Hann")

alpha = 2;
w = besseli(0,pi*alpha*sqrt(1-(2*k/(N-1) -1).^2))/besseli(0,pi*alpha);
plotWindow(w, "Kaiser", "alpha = 2")

alpha = 3;
w = besseli(0,pi*alpha*sqrt(1-(2*k/(N-1) -1).^2))/besseli(0,pi*alpha);
plotWindow(w, "Kaiser", "alpha = 3")

tau = N-1;
epsilon = 0.1;
t_cut = tau * (0.5 - epsilon);
T_in = abs(k - 0.5 * tau);
z_exp = ((t_cut - 0.5 * tau) ./ (T_in - t_cut) + (t_cut - 0.5 * tau) ./ (T_in - 0.5 * tau));
sigma =  (T_in < 0.5 * tau) ./ (exp(z_exp) + 1);        
w = 1 * (T_in <= t_cut) + sigma .* (T_in > t_cut);
plotWindow(w, "Planck-taper", "epsilon = 0.1")

w = 0.35875 - 0.48829*cos(2*pi*k/(N-1)) + 0.14128*cos(4*pi*k/(N-1)) -0.01168*cos(6*pi*k/(N-1));
plotWindow(w, "Blackman-Harris")

w = 0.3635819 - 0.4891775*cos(2*pi*k/(N-1)) + 0.1365995*cos(4*pi*k/(N-1)) -0.0106411*cos(6*pi*k/(N-1));
plotWindow(w, "Blackman-Nuttall")

w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.032*cos(8*pi*k/(N-1));
plotWindow(w, "Flat top")

tau = (N/2);
w = exp(-abs(k-(N-1)/2)/tau);
plotWindow(w, "Exponential", "tau = N/2", "half window decay")

tau = (N/2)/(60/8.69);
w = exp(-abs(k-(N-1)/2)/tau);
plotWindow(w, "Exponential", "tau = (N/2)/(60/8.69)", "60dB decay")

alpha = 2;
w = 1/2*(1 - cos(2*pi*k/(N-1))).*exp(alpha*abs(N-2*k-1)/(1-N));
plotWindow(w, "Hann-Poisson", "alpha = 2")

Kildekode
InfoField

Octave

Source code
function plotWindowLayer (w, N, gridded, wname, wspecifier)
 
  M=32;
  k=0:N-1;
  dr = 120;

  H = abs(fft([w zeros(1,(M-1)*N)]));
  H = fftshift(H);
  H = H/max(H);
  H = 20*log10(H);
  H = max(-dr,H);
 
  figure('Position',[1 1 1200 520])
  subplot(1,2,1)
  set(gca,'FontSize',28)
  area(k,w,'FaceColor', [0 1 1],'edgecolor', [1 1 0],'linewidth', 2)
  xlim([0 N-1])
  if (min(w) >= -0.01)
    ylim([0 1.05])
    set(gca,'YTick', [0 : 0.1 : 1])
    ylabel('amplitude','position',[-16 0.525 0])
  else
    ylim([-1 5])
    set(gca,'YTick', [-1 : 1 : 5])
    ylabel('amplitude','position',[-16 2 0])
  endif
  set(gca,'XTick', [0 : 1/8 : 1]*(N-1))
  set(gca,'XTickLabel',[' 0'; ' '; ' '; ' '; ' '; ' '; ' '; ' '; 'N-1'])
  grid(gridded)
  set(gca,'LineWidth',2)
  set(gca,'gridlinestyle','-')
  xlabel('samples')
  if (strcmp (wspecifier, ""))
    title(cstrcat(wname,' window'))
  else
    title(cstrcat(wname,' window (', wspecifier, ')'))
  endif
  set(gca,'Position',[0.08 0.11 0.4 0.8])
  set(gca,'XColor',[1 0 1])
  set(gca,'YColor',[1 0 1])
  
  subplot(1,2,2)
  set(gca,'FontSize',28)
  h = stem(([1:M*N]-1-M*N/2)/M,H,'-');
  set(h,'BaseValue',-dr)
  ylim([-dr 6])
  set(gca,'YTick', [0 : -10 : -dr])
  set(findobj('Type','line'),'Marker','none','Color',[0 1 1])
  xlim([-M*N/2 M*N/2]/M)
  grid(gridded)
  set(findobj('Type','gridline'),'Color',[.871 .49 0])
  set(gca,'LineWidth',2)
  set(gca,'gridlinestyle','-')
  ylabel('decibels')
  xlabel('bins')
  title('Frequency response')
  set(gca,'Position',[0.59 0.11 0.4 0.8])
  set(gca,'XColor',[1 0 1])
  set(gca,'YColor',[1 0 1])

endfunction

function plotWindow (w, wname, wspecifier = "", wfilespecifier = "")

  if (strcmp (wfilespecifier, ""))
    wfilespecifier = wspecifier;
  endif

  N = size(w)(2);
  B = N*sum(w.^2)/sum(w)^2   % noise bandwidth (bins), set N = 4096 to get an accurate estimate
  
  plotWindowLayer(w, N, "on", wname, wspecifier);  % "gridded" = "on"
  print temp1.png -dpng "-S2500,1165"
  close
  plotWindowLayer(w, N, "off", wname, wspecifier);  % "gridded" = "off"
  print temp2.png -dpng "-S2500,1165"
  close
% I'm not sure what's going on here, but it looks like the author might have been able
% to save himself some time by using set(gca,"Layer","top") and set(gca,"Layer","bottom").
  I = imread ("temp1.png");
  J = imread ("temp2.png");
  info = imfinfo ("temp1.png");
  w = info.Width;
  c = 1-(double(I(:,1:w/2,1))+2*double(J(:,1:w/2,1)))/(255*3);
  m = 1-(double(I(:,1:w/2,2))+2*double(J(:,1:w/2,2)))/(255*3);
  y = 1-(double(I(:,1:w/2,3))+2*double(J(:,1:w/2,3)))/(255*3);
  c = ((c != m) | (c != y)).*(c > 0).*(1-m-y);
  I(:,1:w/2,1) = 255*(1-c-m-y + 0*m + 0*y + 0*c);
  I(:,1:w/2,2) = 255*(1-c-m-y + 0*m + 0*y + 0.4*c);
  I(:,1:w/2,3) = 255*(1-c-m-y + 0*m + 0*y + 0.6*c);
  c = 1-(double(I(:,w/2+1:w,1))+2*double(J(:,w/2+1:w,1)))/(255*3);
  m = 1-(double(I(:,w/2+1:w,2))+2*double(J(:,w/2+1:w,2)))/(255*3);
  y = 1-(double(I(:,w/2+1:w,3))+2*double(J(:,w/2+1:w,3)))/(255*3);
  c = ((c != m) | (c != y)).*c;
  I(:,w/2+1:w,1) = 255*(1-c-m-y + 0*m + 0*y + 0.8710*c);
  I(:,w/2+1:w,2) = 255*(1-c-m-y + 0*m + 0*y + 0.49*c);
  I(:,w/2+1:w,3) = 255*(1-c-m-y + 0*m + 0*y + 0*c);
  if (strcmp (wfilespecifier, ""))
    imwrite (I, cstrcat('Window function and frequency response - ', wname, '.png'));
  else
    imwrite (I, cstrcat('Window function and frequency response - ', wname, ' (', wfilespecifier, ').png'));
  endif
  
endfunction

N=128;
k=0:N-1;

w = 0.42 - 0.5*cos(2*pi*k/(N-1)) + 0.08*cos(4*pi*k/(N-1));
plotWindow(w, "Blackman")

w = 0.355768 - 0.487396*cos(2*pi*k/(N-1)) + 0.144232*cos(4*pi*k/(N-1)) -0.012604*cos(6*pi*k/(N-1));
plotWindow(w, "Nuttall", "continuous first derivative")

w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.032*cos(8*pi*k/(N-1));
plotWindow(w, "Flat top")

w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.028*cos(8*pi*k/(N-1));
plotWindow(w, "SRS flat top")

w = ones(1,N);
plotWindow(w, "Rectangular")

w = (N/2 - abs([0:N-1]-(N-1)/2))/(N/2);
plotWindow(w, "Triangular")

w = 0.5 - 0.5*cos(2*pi*k/(N-1));
plotWindow(w, "Hann")

w = 0.53836 - 0.46164*cos(2*pi*k/(N-1));
plotWindow(w, "Hamming", "alpha = 0.53836")

alpha = 0.5;
w = ones(1,N);
n = -(N-1)/2 : -alpha*N/2;
L = length(n);
w(1:L) = 0.5*(1+cos(pi*(abs(n)-alpha*N/2)/((1-alpha)*N/2)));
w(N : -1 : N-L+1) = w(1:L);
plotWindow(w, "Tukey", "alpha = 0.5")

w = sin(pi*k/(N-1));
plotWindow(w, "Cosine")

w = sinc(2*k/(N-1)-1);
plotWindow(w, "Lanczos")

w = ((N-1)/2 - abs([0:N-1]-(N-1)/2))/((N-1)/2);
plotWindow(w, "Bartlett")

sigma = 0.4;
w = exp(-0.5*( (k-(N-1)/2)/(sigma*(N-1)/2) ).^2);
plotWindow(w, "Gaussian", "sigma = 0.4")

w = 0.62 -0.48*abs(k/(N-1) -0.5) +0.38*cos(2*pi*(k/(N-1) -0.5));
plotWindow(w, "Bartlett–Hann")

alpha = 2;
w = besseli(0,pi*alpha*sqrt(1-(2*k/(N-1) -1).^2))/besseli(0,pi*alpha);
plotWindow(w, "Kaiser", "alpha = 2")

alpha = 3;
w = besseli(0,pi*alpha*sqrt(1-(2*k/(N-1) -1).^2))/besseli(0,pi*alpha);
plotWindow(w, "Kaiser", "alpha = 3")

tau = N-1;
epsilon = 0.1;
t_cut = tau * (0.5 - epsilon);
T_in = abs(k - 0.5 * tau);
z_exp = ((t_cut - 0.5 * tau) ./ (T_in - t_cut) + (t_cut - 0.5 * tau) ./ (T_in - 0.5 * tau));
sigma =  (T_in < 0.5 * tau) ./ (exp(z_exp) + 1);        
w = 1 * (T_in <= t_cut) + sigma .* (T_in > t_cut);
plotWindow(w, "Planck-taper", "epsilon = 0.1")

w = 0.35875 - 0.48829*cos(2*pi*k/(N-1)) + 0.14128*cos(4*pi*k/(N-1)) -0.01168*cos(6*pi*k/(N-1));
plotWindow(w, "Blackman-Harris")

w = 0.3635819 - 0.4891775*cos(2*pi*k/(N-1)) + 0.1365995*cos(4*pi*k/(N-1)) -0.0106411*cos(6*pi*k/(N-1));
plotWindow(w, "Blackman-Nuttall")

w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.032*cos(8*pi*k/(N-1));
plotWindow(w, "Flat top")

tau = (N/2);
w = exp(-abs(k-(N-1)/2)/tau);
plotWindow(w, "Exponential", "tau = N/2", "half window decay")

tau = (N/2)/(60/8.69);
w = exp(-abs(k-(N-1)/2)/tau);
plotWindow(w, "Exponential", "tau = (N/2)/(60/8.69)", "60dB decay")

alpha = 2;
w = 1/2*(1 - cos(2*pi*k/(N-1))).*exp(alpha*abs(N-2*k-1)/(1-N));
plotWindow(w, "Hann-Poisson", "alpha = 2")

Captions

Tilføj en kort forklaring på en enkelt linje om hvad filen viser

Elementer som er med i denne fil

afbilder

image/png

Filhistorik

Klik på en dato/tid for at se filen som den så ud på det tidspunkt.

Dato/tidMiniaturebilledeDimensionerBrugerKommentar
nuværende9. feb. 2013, 17:48Miniature af versionen fra 9. feb. 2013, 17:482.500 × 1.123 (83 KB)Olli NiemitaloAntialiasing, layout changes, larger font
17. dec. 2005, 22:07Miniature af versionen fra 17. dec. 2005, 22:071.038 × 419 (7 KB)Tiaguito~commonswikifile size. color source: http://en.wikipedia.org/wiki/Window_Function
17. dec. 2005, 21:48Miniature af versionen fra 17. dec. 2005, 21:481.038 × 419 (8 KB)Tiaguito~commonswikisource: http://en.wikipedia.org/wiki/Window_Function author: http://en.wikipedia.org/wiki/User:Bob_K

Den følgende side bruger denne fil:

Global filanvendelse

Følgende andre wikier anvender denne fil: