English: It is possible to associate such tilings with some proofs of the Pythagorean theorem, as shown below.
This classical tiling is created from a given right triangle. An Euclidean plane is entirely covered with an infinity of squares, the sizes of which are a and b: the leg lengths of the given triangle. On this drawing, every square element of the tiling, any tile has a slope equal to the ratio of sizes: a / b = tan 30°. Thus a square pattern is indefinitely repeated horizontally and vertically: see <pattern id="pg" in the source code. How many methodical arrangements of colours for all tiles, it is a mathematical problem.
Français : Il est possible d’associer de tels pavages à certaines preuves du théorème de Pythagore, comme ci-dessous ou dans une autre page en français.
Ce pavage classique est créé à partir d’un triangle rectangle donné. Un plan euclidien est entièrement couvert d’une infinité de carrés, dont les dimensions sont a et b : les longueurs des côtés de l’angle droit du triangle donné. Dans ce dessin, tout élément carré du pavage, n’importe quel carreau a une pente égale au rapport des dimensions : a / b = tan 30°. Ainsi un motif carré est répété à l’infini horizontalement et verticalement : voir <pattern id="pg" dans le code source. Combien de dispostions méthodiques de couleurs pour tous les carreaux, voilà un problème mathématique.
A right triangle is given, from which a periodic tiling is created, from which puzzle pieces are constructed.
On three previous images, the hypotenuses of copies of the given triangle are in dashed red. On left, a periodic square in dashed red takes another position relative to the tiling: its center is the one of a small tile. And one of the puzzle pieces is square, its size is the one of a small tile. The four other puzzle pieces have stripes. They can form together a large tile, and they are congruent, because of a rotation a quarter turn around the center of any tile that leaves unchanged the tiling and the grid in dashed red. Therefore the area of a large tile equals four times the area of a striped piece. In case where the initial triangle is isosceles, the midpoint of any segment in dashed red is a common vertex of four tiles with equal sizes: a = b, and each striped piece is still a quarter of a tile, it is an isosceles triangle. Whatever the shape of the initial triangle, the two assemblages of the five puzzle pieces have equal areas: a 2 + b 2 = c 2. Hence the Pythagorean theorem.
at dele – at kopiere, distribuere og overføre værket
at remixe – at tilpasse værket
Under følgende vilkår:
kreditering – Du skal give passende kreditering, angive et link til licensen, og oplyse om der er foretaget ændringer. Du må gøre det på enhver fornuftig måde, men ikke på en måde der antyder at licensgiveren godkender dig eller din anvendelse.
deling på samme vilkår – Hvis du bearbejder, ændrer eller bygger videre på dette værk, skal du distribuere dine bidrag under den samme eller en kompatibel licens som originalen.
Tilladelse er givet til at kopiere, distribuere og/eller ændre dette dokument under betingelserne i GNU Free Documentation License', Version 1.2 eller enhver senere version udgivet af Free Software Foundation; uden et invariant afsnit, ingen forsidetekster, og ingen bagsidetekst. En kopi af licensen er inkluderet i afsnittet GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue
Du kan vælge den licens du foretrækker.
Captions
Tilføj en kort forklaring på en enkelt linje om hvad filen viser
{{Information |Description ={{en|1=Is evoked a tiling of an Euclidean plane by an infinity of squares of two sizes. Here the ratio of sizes [[w:Square root of 3|is square...
Denne fil indeholder ekstra information, som formentlig er tilføjet fra et digitalt kamera eller en skanner, der enten blev brugt til at skabe billede eller digitalisere det. Hvis filen har været ændret siden dens oprindelige tilblivelse, kan nogle detaljer muligvis ikke fuldt ud repræsentere det modificerede billede.